
J Eng Math (2007) 58:19–30
DOI 10.1007/s10665-006-9094-6

ORIGINAL PAPER

A 3D numerical model for computing non-breaking wave
forces on slender piles

Weihua Mo · Kai Irschik · Hocine Oumeraci ·
Philip L.-F. Liu

Received: 6 February 2006 / Accepted: 6 September 2006 / Published online: 24 November 2006
© Springer Science+Business Media B.V. 2006

Abstract In this paper a numerical model for water-wave-body interaction is validated by comparing the
numerical results with laboratory data. The numerical model is based on Euler’s equation without consider-
ing the effects of energy dissipation. The Euler equations are solved by a two-step projection finite-volume
scheme and the free-surface displacements are tracked by the volume-of-fluid method. The numerical
model is used to simulate solitary waves as well as periodic waves and their interaction with a vertical
slender pile. A very good agreement between the experimental data and numerical results is observed for
the time history of free-surface displacement, fluid-particle velocity, and dynamic pressure on the pile.
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1 Introduction

Cylindrical piles are among the most commonly used structures in coastal and offshore engineering. In the
nearshore region they are used for jetties or piers and in deepwater for offshore platforms (see Fig. 1). In
designing coastal and offshore structures, it is essential to accurately estimate wave forces acting on the
piles. In the case of a slender pile, where the diameter of the pile (D) is small in comparison with the design
wave length (λ), the Morison equation [1] represents a good approximation for calculating the wave forces.
On the other hand, if the diameter of the pile is not sufficiently small, the presence of the pile will generate
significant scattered waves and the wave forces can be accurately calculated only if the interaction between
waves and cylinder is fully considered [2].

Regardless of the size of the pile, information on wave forces can be obtained by means of experimental
approaches. Even when the Morison-equation approach is taken, the dependency of two coefficients, CD
(drag coefficient) and CM (mass coefficient), on the wave conditions and the geometry of the pile needs to
be determined empirically. Because of considerable costs and time required by laboratory experiments, it is
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Fig. 1 Slender cylindrical
structures in coastal and
offshore engineering

not very often feasible to perform extensive parameter studies (e.g., variation of water depth, diameter and
inclination of piles, wave parameters, breaker type, and configuration of piles in a group). The alternative is
to use numerical simulations as supplements to laboratory experiments. Moreover, an accurate numerical
simulation might provide much more detailed insights into the physical processes that could hardly be
achieved by an experimental approach.

Modeling the wave–pile interaction faces many challenges. First of all, the flow of interest is a complex
three-dimensional free-surface flow with moving runup boundaries on the pile. For large incident waves,
they might break in front of the pile and flow separation might occur on the lee side of the pile. Therefore,
local, but strong, turbulence in the vicinity of the pile and near the free surface need to be considered. So
far, most of the numerical simulation models developed for three-dimensional wave propagation have been
built upon the potential-flow theory. Using integral-equation methods, highly accurate numerical models
have been developed for wave propagation over varying bathymetry in shallow water and for wave–body
interaction in deep water [3–5]. However, the potential-flow assumption limits these models’ applications
to irrotational flow.

Relaxing the potential-flow assumption, one can employ the three-dimensional Navier–Stokes (NS)
equations to describe flow motions. Theoretically, the direct numerical simulation (DNS) can always be
performed to resolve the entire spectrum of motions ranging from large-eddy motions to the smallest
turbulence (Kolmogorov) scale motions. Clearly, the DNS requires very fine spatial and temporal resolu-
tions and most of DNS applications can only be applied to relatively low Reynolds-number flows within a
small computational domain [6]. With the currently available computing resources, the DNS is still not a
feasible approach for investigating wave–body interaction problems if wave breaking and flow separation
are important.

The alternatives to the DNS approach for computing the turbulent-flow characteristics include the
Reynolds Averaged Navier–Stokes (RANS) equations method and the Large Eddy Simulation (LES)
method. In the RANS equations method, only the ensemble-averaged (mean) flow motion is resolved.
The turbulence effects appear in the momentum equations for the mean flow and are represented by the
Reynolds stresses, which are often modeled by an eddy-viscosity model. The eddy-viscosity can be further
modeled in several different closures [7]. For example, in the k–ε closure model, the eddy viscosity is
hypothesized as a function of the turbulence kinetic energy (k) and the turbulence dissipation rate (ε), for
which balance equations are constructed semi-empirically. Lin and Liu [8] have successfully applied the k–ε

turbulence model in their studies of wave breaking and runup in the surf zone. Lin and Liu’s model have
been extended and applied to many different coastal-engineering problems, including the wave-structure
interaction [9]. In the LES method, the three-dimensional turbulent motions are directly simulated and
resolved down to a pre-determined scale, and the effects of smaller-scale motions are then modeled by
closures. In terms of the computational expense, LES lies between RANS and DNS. Compared to DNS
in solving high-Reynolds-number flows, LES avoids explicitly representing small-scale motions and there-
fore, the computational costs can be greatly reduced. Compared to RANS models, because the large-scale
unsteady motions are computed explicitly, LES can be expected to provide more statistical information
for the turbulence flows in which large-scale unsteadiness is significant [7].
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The flow governing equations for LES are derived from the NS equations by applying a low-pass spatial
filter. Similar to the RANS approach, a term related to the residual-stress tensor or the sub-grid-scale
(SGS) Reynolds stress tensor appears in the filtered NS equations. Thus, a closure model is also required
to relate the residual-stress tensor to the filtered velocity field. The traditional Smagorinsky model [10] is
probably the simplest LES–SGS model and has been used in several breaking wave studies [11–14].

In the present study, we plan to extend the LES model developed by Liu et al. [14], which was origi-
nally designed for studying landslide-generated tsunamis, to wave–pile interaction problems. The model
solves the filtered NS equations using a two-step projection algorithm with finite-volume formulation.
The Volume-of-Fluid (VOF) method [15] is used to track the free-surface motions. The Smagorinsky SGS
model is employed in [14]. In the present work, we intend to improve the SGS model by implementing a
dynamic SGS-closure scheme. However, before developing an adequate dynamic SGS model, we would
like to verify first that the core algorithms of the model (i.e., the VOF method and the two-step projection
methods) are adequate for dealing with the wave–piles interaction problems. Thus, in this paper, we will
ignore the viscous and turbulent effects and solve only the Euler equations. The algorithms for inputting
the appropriate incident waves and for the outgoing waves through a boundary are developed.

Therefore, the objectives of this paper are: (i) the validation of a three-dimensional numerical model
based on Euler’s equations for non-breaking wave propagation and (ii) the investigation of the influence
of a pile on the wave field. For this purpose laboratory datasets, containing large-scale measurements
of the water-surface elevation, the fluid-particle velocity, the pressure at different locations around the
circumference of the pile, and the total wave force are used to check the accuracy of the numerical results.

2 The numerical model

Fluid motion of incompressible and inviscid fluid can be described by Euler’s equations:

∇ · u = 0, (2.1)

∂u
∂t

+ ∇ · (uu) = − 1
ρ

∇p + g, (2.2)

where u represents velocity vector, ρ water density, g the gravity-force vector, t time, and p pressure.
To simulate the wave–pile interaction in a wave flume, the computational domain is usually a rectangu-

lar box which is occupied by water, air and the pile. The upper (ceiling) and lower (bottom of the flume)
boundaries and two lateral (sidewalls of the flume) boundaries of the boundaries, as well as the surface
of the pile are rigid boundaries. Therefore, the no-flux boundary condition is applied. The incident-wave
information, including the velocity and the free-surface displacement, are input at the upstream bound-
ary, while an outflow boundary condition is applied at the downstream boundary. On the free surface,
the dynamic boundary condition requires that the pressure field is continuous. On the other hand, the
kinematic boundary condition is replaced by requiring the conservation of a volume-of-fluid function,
f , representing the volume fraction of water within a computational cell. The f value equals to one, if the
cell is full, zero if empty, and 0 < f < 1 if the cell is partially filled with water. The governing equation for f
can be described by
∂f
∂t

+ ∇ · (f u) = 0. (2.3)

The Euler equations are solved by the two-step projection method [16]. The momentum equations, (2.2),
are split into two fractional steps:

ρn+1u∗ − ρnun

�t
= −∇ · (

ρnuu
)n , (2.4)

ρn+1un+1 − ρn+1u∗

�t
= −∇pn+1 + ρn+1g, (2.5)
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in which the superscript “n” denotes the nth time step. Equation 2.4 is an explicit expression for the
interim velocity, u∗, referred to as the predictor step. On the other hand, (2.5) is called the projection step.
Combining (2.4) with (2.5) produces the time discretization of (2.2):

ρn+1un+1 − ρnun

�t
= −∇ · (ρuu)n − ∇pn+1 + ρn+1g. (2.6)

No additional approximation results from this decomposition.
Equation 2.5 relates un+1 to u∗. By adopting the continuity condition, (2.1), we have:

∇ · ∇pn+1

ρn+1
= ∇ ·

(
u∗

�t
+ g

)
. (2.7)

The above equation is also called the Poisson Pressure Equation (PPE). The pressure pn+1 at the new time
step can be obtained by solving (2.7).

The two-step projection method is implemented in a finite-volume algorithm so that unstructured com-
putational grids (cells) can be used. We also note that a multidimensional PLIC (piecewise linear interface
calculation) method [17] is utilized to construct the free surface. The details of the algorithm can be found
in Wu [16].

3 Comparison of laboratory data and numerical results

To check the capability and accuracy of our current numerical model, we compare numerical results with
available experimental data. The numerical simulations of non-breaking periodic waves and solitary waves
and their interaction with a cylindrical pile were conducted and the results were compared with the exper-
iments conducted in the Large Wave Flume (GWK) of the Coastal Research Centre (FZK) in Hannover,
Germany.

3.1 Laboratory set-up in the GWK experiments

A series of large-scale experiments were conducted in the Large Wave Flume (GWK) of the Coastal
Research Centre (FZK) in Hannover, Germany, to measure the wave forces acting on a cylindrical pile.
This wave flume has an effective length of 309 m, a width of 5 m and a depth of 7 m. A steel circular cylinder
with a diameter of 0.7 m was instrumented and installed in the flume. This paper deals only with a series of
tests of non-breaking monochromatic and solitary waves with the pile placed on flat bottom of the flume
at a distance of 111 m from the wave-maker (see Fig. 2). Additional details on the test set-up are given in
[18] and [19].

To measure wave forces, strain gauges were installed at the two bearings (top and bottom) of the cylinder.
Additionally, 49 pressure transducers were fixed on the cylinder; they are uniformly distributed along the
frontline of the cylinder with a spacing �z = 0.2 m and are also spread out over the circumference in two
horizontal cross-sections. The time histories of the water-surface elevation were measured with 19 wave
gauges. Four wave gauges were located at the pile and 15 of them along the flume. Four two-component
current meters measured the water particle velocities under the trough and six propeller probes are used
in the region above the wave trough. They were located at the side wall of the flume corresponding to the
front line of the cylinder.

In this paper three representative experimental cases are used to check the numerical results in detail.
The characteristics of these non-breaking regular waves and solitary wave cases, ranging from intermediate
water depth waves to the shallow water wave, are shown in Table 1.
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Fig. 2 A sketch of the Large Wave Flume (GWK) of the Coastal Research Centre (FZK) with a summary the measuring
devices used for comparison in this study

Table 1 Wave conditions used in the laboratory experiments (GWK) and numerical simulations

Type of wave Water depth, h (m) Wave period, T (s) Wave height, H (m) kh kH

1 Regular 4.76 4 1.20 1.3523 0.3282
2 Regular 4.77 6 1.35 0.7885 0.2233
3 Solitary 4.755 4.92 0.7 – –

3.2 Numerical simulations of GWK solitary wave experiments

To reduce the computational costs, it is desirable to use only half width of the wave flume in the numerical
simulations. The concern, however, is whether the flow field is actually symmetric with respect to the
centreline of the tank. We have compared the results based on the full-wave tank width as well as the
half-wave tank width. The differences between two simulations are negligible. Therefore, all the results
presented herein are based on the half-wave tank width simulations. As shown in Fig. 3, the horizontal
computational domain is 60 m long and 2.5 m wide and is bounded laterally by two solid boundaries. The
incident-wave conditions are prescribed along the upstream boundary, while the radiation boundary condi-
tion is employed at the downstream boundary. The wave is allowed to propagate out of the computational
domain without reflection by specifying the outgoing flow properties:

∂ϕ

∂t
+ Cg

∂ϕ

∂n
= 0,

where ϕ is a physical variable, such as the fluid velocity, Cg is the group velocity and Cg = √
g(h + η) for a

long wave, η is the free-surface elevation measured from the still-water depth, and h the still-water depth;
∂ϕ/∂n is the normal derivative at the downstream boundary.

Unstructured meshes are used to discretize the computational domain with finer grids in the region near
the cylinder. Generally speaking, 10 grids with uniform grid size, �y = 0.25 m, are placed in the spanwise
direction and 59 non-uniform grids with minimum grid �zmin = 0.05 m near the free surface are installed
in the vertical direction. In the streamwise direction three different zones are designed: Near the upstream
boundary coarser grids with �x = 0.6 m ∼ 0.25 m are installed; in the neighbourhood of the pile finer grids,
�x = 0.25 m ∼ 0.06 m, are employed (there are 18 grids along the half perimeter of the pile); and coarser
grids, �x = 0.06 m ∼ 0.5 m are employed near the outflow boundary. The total number of computational
cells is 101,716.
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Fig. 3 Computational domain (not to scale)

The experimentally measured time history of free-surface displacements at the wave gauge located at
29.5 m upstream of the pile was used as the input incident wave boundary condition at the upstream bound-
ary. The corresponding fluid velocity for the incident wave is calculated using the following approximate
formula [20]:
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= η
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where η denotes the measured time history of free-surface elevation, H the wave height and h the water
depth.

Figure 4 shows the numerical results for the time histories of free-surface displacement at several
wave-gauge locations. The time used in these figures indicates the numerical simulation time. An excellent
agreement between the numerical results and the experimental data for the wave crest and the trailing
wave trough is observed at gauges in front of the pile. However, noticeable differences near the wave crest
at the wave gauge, located at 10 cm away from the side of the pile (θ = 90◦), are observed, which could be
the consequence of flow separation.

Figure 5 shows the time histories of the horizontal particle velocity at different locations. ADV velocity
meters are installed at the side wall corresponding to the frontline of the pile. ADV 1 ∼ 4 and the pro-
peller probes are located at different elevations and the elevations from the bottom are zADV1 = 2.03 m,
zADV3 = 3.23 m, zADV4 = 3.83 m, zprop1 = 4.23 m, zprop2 = 4.63 m, zprop3 = 5.03 m, respectively. We first
note that the experimental data are raw data without applying any filtering out the noise. The numerical
results for the maximum horizontal velocity slightly over-estimate the laboratory data. It is interesting to
observe that, although trailing wave troughs appeared in the free-surface measurements shown in Fig. 4,
these troughs disappeared in the horizontal velocity measurements. The numerical results are consistent
with the surface elevation as shown in Fig. 4. Additionally, the agreement between the experimental data
and numerical results is incredibly good for the vertical component (which is not shown here).

In Fig. 6, the dynamic-pressure responses along the perimeter at z/h = −0.11 (4.23 m above the bottom)
are plotted. Note that θ = 0◦ and 180◦ denote the front and back of the pile, respectively. The agreement
between the numerical results and experimental data is excellent, except at the locations θ = 0◦ and 120◦.
Similar agreement is also obtained along the perimeter at z/h = −0.44 (2.63 m above the bottom), which
is not shown here. Figure 7 shows the dynamic pressure distribution over the depth in the front of the pile,
θ = 0◦, at the instant t

√
g/h = 21.62 when the force acted on the pile reaches its maximum. The dynamic

pressure varies nearly linearly above the still-water level and is almost a constant under the still-water
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Fig. 4 Time histories of free-surface displacements

Fig. 5 Time histories of horizontal particle velocity at different elevations

level. The numerical results overestimate the experimental data by about 10% under the still-water level,
while the agreement is very good above the still-water level.

Figure 8 shows the measured and calculated wave force acting on the cylinder. Numerical results are
obtained by integrating the pressure distribution on the wetted surface of the pile. The agreement is
surprisingly poor; the difference in maximum force is almost a factor of 2. In view of the good agreement
between experimental data and numerical results for velocity, pressure and free-surface elevation as shown
in Figs. 4–6, the only explanation for such a huge difference in resulting force could be a mistake made in
our numerical integration of pressure. However, as will be shown in the next section, the same algorithm is
used to calculate the wave forces due to periodic waves. A much better agreement is observed. Therefore,
the question for the discrepancy shown in Fig. 8 remains open.
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Fig. 6 Time histories of dynamic pressure along the perimeter of the pile at z/h = −0.11

Fig. 7 Dynamic pressure over the depth in front of the pile
(Solid line: numerical; ◦: laboratory)

Fig. 8 Time history of total wave force acting on the pile

3.3 Numerical simulations of GWK periodic wave experiments

Numerical simulations were also carried out for two non-breaking periodic wave cases as shown in Table
1. The detailed comparisons are presented here only for the first case with a water depth h = 4.76 m, a
wave period T = 4.0 s and a wave height H = 1.2 m. In this section, first the incident boundary conditions
are discussed and the technique is checked due to the comparison of numerical results with the so-called
undisturbed measured water-surface elevations and horizontal particle velocities in the next section. Finally,
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the loads on the slender pile, i.e., local pressure and total force, from numerical and laboratory experiments
will be shown.

In order to minimize the computational domain and to use the available computer source most effi-
ciently, a regular wave train is driven into the numerical tank directly on the incident boundary (see Fig. 3)
by specifying appropriate water-surface elevation, horizontal and vertical particle velocity in the entire
water depth. These quantities are obtained by adopting the Fourier approximation method suggested by
Fenton [21] with the wave parameters indicated in Table 1. Thus, the wave free-surface elevation and
fluid-particle velocities at incident-wave boundary (x = 0) are:

η(t) = 1
k

⎡

⎣
N∑

j=1

Yj cos jkCt

⎤

⎦ , (3.3)

u = 1
√

k/g

⎡

⎣C
√

k/g − Ū
√

k/g +
N∑

j=1

jBj
cosh jk(h + z)

cosh jkh
cos jkCt

⎤

⎦ , (3.4)

w = 1
√

k/g

⎡

⎣
N∑

j=1

jBj
sinh jk(h + z)

cosh jkh
sin jkCt

⎤

⎦ . (3.5)

The spanwise velocity component, v, is zero at the incident-wave boundary condition. The values of Fourier
coefficients Yj and Bj depend on the choice of truncation order. The parameter C is the wave celerity and Ū
is the mean fluid speed in the moving frame with a speed of C. The advantage of all Fourier approximation
methods, e.g. [21] and [22], is that these methods can be applied to general wave conditions, including waves
in both deep water and water of finite depth. The Fenton formulation can adopt both Stokes’s first and
second approximation of phase speed. For the present simulation in a closed wave tank Fenton’s method
uses Stokes’s second approximation of phase speed together with zero Stokes drift CS.

The computational domain for this simulation is slightly larger than the one used for the solitary-wave
simulations. The total length in the direction of wave propagation is 77 m, where the distance between
the upstream boundary and the front of the cylinder is 40 m long. Finer grids are installed around the
cylinder with 26 grid points along the perimeter of the pile and coarser grids are used in the regions far
away from the pile with �x = 0.35 m (roughly, 60 grids in one wavelength). The vertical grid is uniform
with �z = 0.1094 m, i.e., there are about 10 grids within one wave height.

The surface elevations measured at several wave gauges are plotted with numerical results in Fig. 9.
Incident-wave condition measured at the flume wall (WG 11) and the water-surface elevation at the cyl-
inder (WGCYL-1 ∼ 3) are shown. The synchronization of all time histories has been done due to the
comparison of numerical and laboratory surface elevation measured at wave gauge WG 11. The reference
wave amplitude in Fig. 9 is the maximum elevation of WG 11 ηmax,WG11. In general, the agreement between
measured data and numerical results is reasonably good. Even some characteristic ripples are predicted
well, which are measured in the frontline of the cylinder (WGcyl 1) while the wave trough passes the pile.

Figure 10 shows the velocity profiles at different elevations from the bed. The numerical model tends to
underestimate the crest of the velocity slightly, while it overestimates the trough velocities. It is obvious that
the propeller probes record absolute values only. The numerical results show a downward drift, suggesting
a small opposing current. This feature could be caused by the imperfect incident boundary conditions.

The time histories of the dynamic pressure along the perimeter of the pile at z/h = −0.11 (4.23 m above
the bottom) are shown in Fig. 11. The numerical model underestimates most of the crests of the measured
pressure slightly. Taking into account the comparison of the incident wave conditions, the difference of
the measured and predicted pressure is in agreement with the differences presented in Fig. 10. The criti-
cal region from view of flow separation, θ = 90◦–120◦, no significant change of the time history is visible,
neither for the comparison between each laboratory experiment nor for the comparison with the numerical
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Fig. 9 Free-surface displacements at various locations upstream and in the vicinity of the pile

Fig. 10 Time histories of horizontal particle velocity at different elevations

results. The pressure measurements of the lower section have the same pattern as shown here for the upper
section.

The time history of the total inline force acting on the pile is plotted on the left-hand side in Fig. 12.
In the case of the laboratory data the force Fx represents the sum of the measured force in the bearings
and in the numerical case the pressure has been integrated over the wetted surface of the cylinder. The
total inline force is predicted with excellent accuracy. The maximum discrepancy in the maximum force is
about 10%. Recall that in the solitary wave case the difference in wave force is a factor of two, although
the overall agreement between the numerical results and experimental data for the velocity, free-surface
elevation and pressure is much better than that for the periodic-wave case.
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Fig. 11 Time histories of dynamic pressures along the perimeter of the pile at z/h = −0.11
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Fig. 12 Time history of the total force acting on the pile

To prove the assumption that the determined test is inertia-dominated, a comparison with the Morison–
Inertia force using a force coefficient CM = 2 and the undisturbed water-surface elevation (measured at
the side wall) is shown on the right-hand side of Fig. 12. The extreme loads occur synchronously to the
zero-crossings of the water-surface elevation and are in phase with the horizontal particle acceleration.

4 Concluding remarks

A 3D numerical model, developed for studying water wave–body interaction problems, has been tested
with experimental data for periodic and solitary waves interacting with a slender pile. For the tested cases,
waves are non-breaking and turbulence is negligible. The comparisons show that the numerical model is
capable of predicting free-surface displacement, fluid-particle velocity, and dynamic pressure on the pile,
provided that the correct incident boundary conditions are applied. The relatively less satisfactory agree-
ment in the particle velocity of periodic waves may be due to the imperfect incident boundary conditions
used in the numerical simulations. A ramp function, i.e., spinning up the incident waves, can be used to
improve the situation.

The agreement between experimental data and numerical results for the wave force is reasonable and
consistent with the comparisons of other physical variables for the periodic cases. Unfortunately, this is not
the case for solitary waves. Large discrepancy is observed in the wave force measurements and numerical
calculations. Additional numerical and laboratory experiments will be performed in the near future.
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